CABLES CUANTICOS

WELCOME TO THE WEB OF MARIE TATOO AMY LEE AEROGRAFIA FOTOGRAFIA EVANESCENCE VERTIGO CARROS MOTOS GALERIA CARROS Y MOTOS GALERIA TATOO GALERIA FOTOGRAFIA Y AEROGRAFIA BIOINFORMATICA TELEFONIA CELULAR Y WIFI ENERGIA EOLICA Y DOMOTICA SIG CABLES CUANTICOS NANOTECNOLOGIA EN MEMORIA UNIVERSAL FOTONICA ANBIENMATICA METABOLOMICA FABRICAS DE BACTERIAS VIRUS DE TELEFONOS MOVILES BIOMECATRONICA COMENTARIOS



CABLES CUANTICOS

En física de la materia condensada, un hilo cuántico es un alambre conductor eléctrico en el que los efectos cuánticos afectan las propiedades del transporte. Debido al confinamiento de electrones de conducción en la dirección transversal del alambre, su energía transversal es cuantizada en una serie de valores discretos E0 (energía de "estado base???/tierra???/cero???", con valor bajo), E1,... (ver partícula en una caja, oscilador armónico cuántico). Una consecuencia de esta cuantización es que la fórmula clásica para calcular la resistencia eléctrica de un alambre: (donde ρ es la resistencia, l es la longitud, y A es el área seccionada transversalmente del alambre), no es válida paralos hilos cuánticos. En lugar de ello, para calcular la resistencia de un alambre tiene que ser realizado un cálculo exacto de las energías transversales de los electrones confinados. Siguiendo desde la cuantización de la energía del electrón, la resistencia también se encuentra que debe ser cuantizada.   Para un material dado, la importancia de la cuantización es inversamente proporcional al diámetro del nanohilo. De un material a otro, es dependiente de las propiedades electrónicas, especialmente en la masa efectiva de los electrones. En palabras simples esto significa que, dentro de un material dado, dependerá de cómo interactúan los electrones de conducción con los átomos. En la práctica, los semiconductores muestran claramente la cuantización de la conductancia en grandes dimensiones transversales de alambre (100 nm), porque debido al confinamiento, los modos electrónicos están espacialmente extendidos. Como resultado, sus longitudes de onda de fermi son grandes y por lo tanto tienen bajas separaciones de energía. Esto significa que solo pueden ser resueltas a temperatura criogénica (pocos kelvins) donde la energía de exitación térmica es más baja que la separación de energía inter-modo. Para los metales, la cuantización correspondiente a los estados más bajos de energía solo se observa en alambres atómicos. Por lo tanto, su longitud de onda correspondiente es extremadamente pequeña, teniendo una separación de energía muy grande que hace una resistencia de cuantización perfectamente observable a temperatura ambiente.   

NANOTUBOS DE CARBONO

Es posible hacer hilos cuánticos de nanotubos de carbono metálicos, por lo menos en cantidades limitadas. Las ventajas de hacer los alambres de nanotubos de carbono incluyen su alta conductividad eléctrica (debido a una alta movilidad), peso ligero, diámetro pequeño, baja reactividad química, y alta fuerza de tensión. La desventaja principal (al 2005) es el costo. Se ha afirmado que es posible crear hilos cuánticos macroscópicos. Con una cuerda de nanotubos de carbono, no es necesario que ninguna fibra individual recorra la longitud completa de la cuerda, puesto que el efecto túnel cuántico permitirá que los electrones salten de un filamento a otro.

NANOHILO

Un nanohilo (nanowire en inglés) es un alambre con un diámetro del orden de un nanómetro (10-9 metros). Alternativomente, los nanohilos pueden ser definidos como estructuras que tienen un tamaño lateral restringido a diez o menos nanómetros y de una longitud libre. A estas escalas, los efectos de la mecánica cuántica son importantes - por lo tanto estos alambres, también son conocidos como "hilos cuánticos" (quantum wires). Existen muchos tipos diferentes de nanohilos, incluyendo hilos metálicos (ej., Ni, Pt, au), semiconductores (ej., Si, InP, GaN, etc.), y aisladores (ej., SiO2,TiO2). Los nanohilos moleculares están compuestos de unidades de moleculares repetitivas ya sean orgánicas (ej. ADN) o inorgánicas (ej. Mo6S9-xIx). El el futuro cercano, los nanohilos se podrán usar para ligar minúsculos componentes en circuitos extremadamente pequeños. Usando la nanotecnología, tales componentes pueden ser creados a partir de compuestos químicos.